Liver transplantation is the only definitive treatment currently available for acute and chronic liver failure. However, this approach has been restricted by complications including rejection and infection. Tissue engineering approaches using stem cell-derived functional hepatic cells offer a potential alternative. Using biologically compatible scaffolds is an important complementary key to achieve optimal construct for hepatic replacement. In the present study, to optimize the differentiation of human adipose-derived mesenchymal stem cells (ADMSCs) toward hepatocyte-like cells, a previously described gelatin cryogel was optimized and improved by laminin, the major component of basal lamina. The ADMSCs seeded on the scaffold displayed increased attachment in the presence of laminin and the MTT assay showed good compatibility for cell proliferation. The differentiation of stem cells were evaluated using glycogen staining, urea secretion measurement, hepatocyte specific cell surface analysis and gene expression analysis. The results of tests indicated that laminin protein and gelatin cryogel 3D scaffold, each on its own, enhanced hepatogenic differentiation of ADMSCs. However, when laminin immobilized on the gelatin cryogel surface, the differentiation was promoted significantly and the resulting cells showed striking similarity to HepG2 in terms of expressing studied hepatocyte markers.
Keywords: Cryogels; Gelatin; Hepatocyte; Laminin; Mesenchymal stem cells.
Copyright © 2018 Elsevier Inc. All rights reserved.