The rules by which neurons in neocortex choose their synaptic partners are not fully understood. In sensory cortex, intermingled neurons encode different attributes of sensory inputs and relay them to different long-range targets. While neurons with similar responses to sensory stimuli make connections preferentially, the relationship between synaptic connectivity within an area and long-range projection target remains unclear. We examined the local connectivity and visual responses of primary visual cortex neurons projecting to anterolateral (AL) and posteromedial (PM) higher visual areas in mice. Although the response properties of layer 2/3 neurons projecting to different targets were often similar, they avoided making connections with each other. Thus, projection target, in addition to response similarity, constrains local synaptic connectivity of AL and PM projection neurons. We propose that reduced crosstalk between different populations of projection neurons permits independent function of these output channels.
Keywords: cell types; projection neurons; synaptic connectivity; visual cortex.
Copyright © 2018 Elsevier Inc. All rights reserved.