Dexamethasone protects retinal ganglion cells but not Müller glia against hyperglycemia in vitro

PLoS One. 2018 Nov 26;13(11):e0207913. doi: 10.1371/journal.pone.0207913. eCollection 2018.

Abstract

Diabetic retinopathy (DR) is a common complication of diabetes, for which hyperglycemia is a major etiological factor. It is known that retinal glia (Müller cells) and retinal ganglion cells (RGCs) are affected by diabetes, and there is evidence that DR is associated with neural degeneration. Dexamethasone is a glucocorticoid used to treat many inflammatory and autoimmune conditions, including several eye diseases like DR. Thus, our goal was to study the effect of dexamethasone on the survival of RGCs and Müller glial cells isolated from rat retinas and maintained in vitro under hyperglycemic conditions. The behavior of primary RGC cell cultures, and of mixed RGC and Müller cell co-cultures, was studied in hyperglycemic conditions (30 mM glucose), both in the presence and absence of Dexamethasone (1 μM). RGC and Müller cell survival was evaluated, and the conditioned media of these cultures was collected to quantify the inflammatory cytokines secreted by these cells using a multiplex assay. The role of IL-1β, IL-6 and TNFα in RGC death was also evaluated by adding these cytokines to the co-cultures. RGC survival decreased significantly when these cells were grown in high glucose conditions, reaching 54% survival when they were grown alone and only 33% when co-cultured with Müller glia. The analysis of the cytokines in the conditioned media revealed an increase in IL-1β, IL-6 and TNFα under hyperglycemic conditions, which reverted to the basal concentration in co-cultures maintained in the presence of dexamethasone. Finally, when these cytokines were added to co-cultures they appeared to have a direct effect on RGC survival. Hence, these cytokines could be implicated in the death of RGCs when glucose concentrations increase and dexamethasone might protect RGCs from the cell death induced in these conditions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Coculture Techniques
  • Cytokines / metabolism
  • Cytoprotection / drug effects*
  • Dexamethasone / pharmacology*
  • Ependymoglial Cells / drug effects*
  • Ependymoglial Cells / metabolism
  • Ependymoglial Cells / pathology
  • Female
  • Hyperglycemia / metabolism
  • Hyperglycemia / pathology*
  • Rats
  • Rats, Sprague-Dawley
  • Retinal Ganglion Cells / drug effects*
  • Retinal Ganglion Cells / metabolism
  • Retinal Ganglion Cells / pathology

Substances

  • Cytokines
  • Dexamethasone

Grants and funding

This work was funded by the support of Retos-MINECO Fondos Feder (RTC-2016-48231) and Grupos Consolidados del Gobierno Vasco (IT437-10) to E.V.