Phosphorylation Induces Conformational Rigidity at the C-Terminal Domain of AMPA Receptors

J Phys Chem B. 2019 Jan 10;123(1):130-137. doi: 10.1021/acs.jpcb.8b10749. Epub 2018 Dec 27.

Abstract

The intracellular C-terminal domain (CTD) of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor undergoes phosphorylation at specific locations during long-term potentiation. This modification enhances conductance through the AMPA receptor ion channel and thus potentially plays a crucial role in modulating receptor trafficking and signaling. However, because the CTD structure is largely unresolved, it is difficult to establish if phosphorylation induces conformational changes that might play a role in enhancing channel conductance. Herein, we utilize single-molecule Förster resonance energy transfer (smFRET) spectroscopy to probe the conformational changes of a section of the AMPA receptor CTD, under the conditions of point-mutated phosphomimicry. Multiple analysis algorithms fail to identify stable conformational states within the smFRET distributions, consistent with a lack of well-defined secondary structure. Instead, our results show that phosphomimicry induces conformational rigidity to the CTD, and such rigidity is electrostatically tunable.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Fluorescence Resonance Energy Transfer
  • Models, Molecular
  • Phosphorylation
  • Protein Conformation
  • Receptors, AMPA / chemistry*
  • Receptors, AMPA / metabolism

Substances

  • Receptors, AMPA