The Micronemal Plasmodium Proteins P36 and P52 Act in Concert to Establish the Replication-Permissive Compartment Within Infected Hepatocytes

Front Cell Infect Microbiol. 2018 Nov 27:8:413. doi: 10.3389/fcimb.2018.00413. eCollection 2018.

Abstract

Within the liver, Plasmodium sporozoites traverse cells searching for a "suitable" hepatocyte, invading these cells through a process that results in the formation of a parasitophorous vacuole (PV), within which the parasite undergoes intracellular replication as a liver stage. It was previously established that two members of the Plasmodium s48/45 protein family, P36 and P52, are essential for productive invasion of host hepatocytes by sporozoites as their simultaneous deletion results in growth-arrested parasites that lack a PV. Recent studies point toward a pathway of entry possibly involving the interaction of P36 with hepatocyte receptors EphA2, CD81, and SR-B1. However, the relationship between P36 and P52 during sporozoite invasion remains unknown. Here we show that parasites with a single P52 or P36 gene deletion each lack a PV after hepatocyte invasion, thereby pheno-copying the lack of a PV observed for the P52/P36 dual gene deletion parasite line. This indicates that both proteins are equally important in the establishment of a PV and act in the same pathway. We created a Plasmodium yoelii P36mCherry tagged parasite line that allowed us to visualize the subcellular localization of P36 and found that it partially co-localizes with P52 in the sporozoite secretory microneme organelles. Furthermore, through co-immunoprecipitation studies in vivo, we determined that P36 and P52 form a protein complex in sporozoites, indicating a concerted function for both proteins within the PV formation pathway. However, upon sporozoite stimulation, only P36 was released as a secreted protein while P52 was not. Our results support a model in which the putatively glycosylphosphatidylinositol (GPI)-anchored P52 may serve as a scaffold to facilitate the interaction of secreted P36 with the host cell during sporozoite invasion of hepatocytes.

Keywords: 6-cys s48/45; Plasmodium; TRAP; invasion; malaria; microneme secretion; protein complex; sporozoite.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • CD36 Antigens / metabolism
  • Culicidae
  • Cytoplasm / metabolism
  • Female
  • Gene Deletion
  • Gene Knockout Techniques
  • Glycosylphosphatidylinositols
  • Hepatocytes / parasitology*
  • Hepatocytes / pathology
  • Malaria / metabolism*
  • Mice
  • Mice, Inbred BALB C
  • Plasmodium yoelii / metabolism
  • Protozoan Proteins / genetics*
  • Protozoan Proteins / metabolism*
  • Receptor, EphA2 / metabolism
  • Salivary Glands / parasitology
  • Salivary Glands / pathology
  • Sporozoites / metabolism*

Substances

  • CD36 Antigens
  • Glycosylphosphatidylinositols
  • Protozoan Proteins
  • Receptor, EphA2