Silencing of type II phosphatidylinositol 4-kinase β stabilizes prostate apoptosis response-4 and induces apoptosis in cancer cells

Biochem J. 2019 Jan 31;476(2):405-419. doi: 10.1042/BCJ20180732.

Abstract

Type II phosphatidylinositol 4-kinase β (PtdIns 4-kinase II β) is an enigma among the phosphatidylinositol 4-kinase family. The role of PtdIns 4-kinase II β in MCF-7 cells was addressed with the help of short hairpin RNA (shRNA). PtdIns 4-kinase II β shRNA transfection increased pan-caspase activity and induced apoptosis in cancerous MCF-7 cells. Non-cancerous MCF-10A cells were resistant to PtdIns 4-kinase II β shRNA-induced apoptosis. Caspase 8 and 9 inhibitors rescued MCF-7 cells from apoptosis. Shotgun proteomic studies with Flag-tagged PtdIns 4-kinase II β immunoprecipitates showed tumor suppressor prostate apoptosis response-4 (Par-4) as one of the interacting proteins in HEK293 cells. In reciprocal experiments, Par-4 antibodies co-precipitated PtdIns 4-kinase II β from MCF-7 cells. Deletion of membrane localization motif (ΔCCPCC) or a mutation in ATP-binding region (D304A) of PtdIns 4-kinase II β did not affect its interaction with Par-4. Pull-down assays with GST-PtdIns 4-kinase II β-truncated mutants showed that the region between 101 and 215 amino acid residues is essential for interaction with Par-4. At molecular level, PtdIns 4-kinase II β shRNA transfection increased Par-4 stability, its nuclear localization and inhibition of NF-κB binding to target DNA. Knocking down of Par-4 with siRNA (small interfering RNA) rescued MCF-7 cells from PtdIns 4-kinase II β shRNA-induced apoptosis. These results suggest that PtdIns 4-kinase II β may be a novel regulator of Par-4 through protein-protein interactions. These studies have potential implications in cancer therapy.

Keywords: lipid kinases; nuclear factor kappa B; protein–protein interactions; signal transduction; tumor suppressor gene.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 1-Phosphatidylinositol 4-Kinase / genetics
  • 1-Phosphatidylinositol 4-Kinase / metabolism*
  • Amino Acid Motifs
  • Amino Acid Sequence
  • Apoptosis Regulatory Proteins / genetics
  • Apoptosis Regulatory Proteins / metabolism*
  • Apoptosis*
  • HEK293 Cells
  • Humans
  • MCF-7 Cells
  • Neoplasm Proteins / genetics
  • Neoplasm Proteins / metabolism*
  • Neoplasms / genetics
  • Neoplasms / metabolism*
  • Neoplasms / pathology
  • Sequence Deletion

Substances

  • Apoptosis Regulatory Proteins
  • Neoplasm Proteins
  • prostate apoptosis response-4 protein
  • 1-Phosphatidylinositol 4-Kinase