Differentially expressed genes: OCT-4, SOX 2, STAT 3, CDH 1 and CDH 2, in cultured mesenchymal stem cells challenged with serum of women with endometriosis

J Genet Eng Biotechnol. 2018 Jun;16(1):63-69. doi: 10.1016/j.jgeb.2017.10.006. Epub 2017 Oct 12.

Abstract

Endometriosis is a common chronic gynecological disorder defined as the presence of ectopic functional endometrial tissues, outside uterine cavity, primarily on the pelvic peritoneum and the ovaries. Several studies revealed a correlation between aberrant stem-cell activity in the endometrium and endometriosis. Yet the molecular and cellular behaviors of mesnchymal stem cells in development of endometriosis are hampered by lack of invitro experiments. Our aim was to explore morphological and molecular changes associated with mesenchymal stem cells (MSCs) exposition to serum derived from women with severe endometriosis. Two cell cultures of MSCs isolated from endometrial tissues of two endometriosis-free women. Each cell culture was treated individually with the serum of women with endometriosis (experimental group/n = 7), and serum of women without endometriosis (control group/ n = 4) for 14 days. Quantitative Real-Time PCR was performed later to reveal expression of OCT-4, CDH1 and CDH2, STAT3 and SOX2 genes. Morphologically, cells showed no significant changes. However from molecular point of view, we found increased expression in OCT-4, CDH1 and CDH2. For STAT3 and SOX2 we did not find a significant difference. This study shows that endometriosis serum induced molecular changes in human endometrial MSCs (EnMSCs) that might be related to altered cell behavior which may be a step in differentiation that may be completed invivo by other factors to complete the process of transition. Further researches are needed for optimization to reach differentiation.

Keywords: E-cadherin; Endometriosis; Mesnchymal stem cells; N-cadherin; OCT-4; SOX2; STAT3.