Background: Despite being one of the most common benign tumors, the prevalence and pathogenesis of hemangiomas (HAs) are poorly understood. We aimed to identify the biological role of the long non-coding RNA (lncRNA) CASC9 in the HA-derived endothelial cell (HDECs) phenotype as well as elucidate the mechanism involved.
Methods: The expression of CASC9 was identified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). the effect of CASC9 on cell proliferation, migration and invasion of HDECs were examined by CCK8, wound healing, and transwell assay, respectively. Bioinformatics analysis and a luciferase reporter assay were utilized to investigated the mechanisms involved. The in vivo tumorigenesis capability of CASC9 on HA was also evaluated.
Results: The expression of CASC9 was significantly elevated in HA tissue compared to normal tissue. Down-regulation of CASC9 inhibited proliferation, migration, and invasion of HDECs. The translation of cyclinD1, N-cadherin, Twist, and MMP2 was also decreased by CASC9 knockdown treatment. Furthermore, CASC9 over-expression exerted the opposite effect of proliferation, migration, and invasion of HDECs. We also found that CASC9 interacts with miR-125a-3p/Nrg1 to regulate cellular functions. Interestingly, miR-125a-3p can reverse the effect of CASC9 on proliferation, migration, and invasion of HDECs. Together, the clinical data showed that CASC9 expression is negatively correlated with miR-125a-3p expression and positively correlated with Nrg1 expression. CASC9 also exerted anti-tumorigenesis capability in vivo.
Conclusion: Our study indicates that CASC9 accelerates cell growth and invasion of HDECs and provides new insights for the diagnosis and molecular therapy of HA.
Keywords: CASC9; Nrg1; cell migration; hemangioma; invasion; miR-125a-3p.