The aim of this study was to evaluate the effect of ampicillin, an organic acid-based feed additive and a synbiotic preparation on the prevalence of antibiotic-resistant E. coli in the ceca of broilers. A total of 2000 broiler chickens (Ross 708) were randomly assigned to 5 groups with 8 replicates. The negative control group was the only group that was not subjected to avian pathogenic E. coli challenge, while all the other 4 groups received a multi-resistant E. coli strain that was resistant to ampicillin, cephalexin, and nalidixic acid as an oral challenge. The second group served as a challenge control, and the third group received the antibiotic ampicillin via water for 5 d. The fourth group received a feed additive based on organic acids and cinnamaldehyde, and the fifth group received a synbiotic preparation via feed and water. On day 17 and 38 of the trial, cecal samples from 3 birds from each of the 40 pens were obtained, and the E. coli counts and abundances of antibiotic-resistant E. coli were determined. Oral challenge with an avian pathogenic E. coli strain did not influence the performance, and there was no significant difference in growth performance between groups. The total E. coli count was lower (P < 0.05) in the group supplemented with the synbiotic than in the challenge control group on day 38 of the trial. Administration of an antibiotic for 5 d led to a significant increase in the abundance of E. coli strains resistant to ampicillin, amoxicillin-clavulanic acid, cefoxitin, and ceftriaxone. There was no increase in the abundance of antibiotic-resistant E. coli observed in the groups that received feed supplemented with an organic acid/cinnamaldehyde-based feed additive or a synbiotic. Moreover, the effects of the tested feed additives on the prevalence of resistant E. coli are demonstrated by the lower ceftriaxone minimal inhibitory concentration values for this group than for the antibiotic group. Additionally, the synbiotic group exhibited lower ceftriaxone minimal inhibitory concentration values than the antibiotic group.
Keywords: E. coli challenge; APEC; antibiotic resistance; feed additive; poultry.
© The Author(s) 2019. Published by Oxford University Press on behalf of Poultry Science Association.