Glycosaminoglycan Compositional Analysis of Relevant Tissues in Zika Virus Pathogenesis and in Vitro Evaluation of Heparin as an Antiviral against Zika Virus Infection

Biochemistry. 2019 Feb 26;58(8):1155-1166. doi: 10.1021/acs.biochem.8b01267. Epub 2019 Feb 13.

Abstract

Zika virus (ZIKV) is an enveloped RNA virus from the flavivirus family that can cause fetal neural abnormalities in pregnant women. Previously, we established that ZIKV-EP (envelope protein) binds to human placental chondroitin sulfate (CS), suggesting that CS may be a potential host cell surface receptor in ZIKV pathogenesis. In this study, we further characterized the GAG disaccharide composition of other biological tissues (i.e., mosquitoes, fetal brain cells, and eye tissues) in ZIKV pathogenesis to investigate the role of tissue specific GAGs. Heparan sulfate (HS) was the major GAG, and levels of HS-6-sulfo, HS 0S (unsulfated HS), and CS 4S disaccharides were the main differences in the GAG composition of Aedes aegypti and Aedes albopictus mosquitoes. In human fetal neural progenitor and differentiated cells, HS 0S and CS 4S were the main disaccharides. A change in disaccharide composition levels was observed between undifferentiated and differentiated cells. In different regions of the bovine eyes, CS was the major GAG, and the amounts of hyaluronic acid or keratan sulfate varied depending on the region of the eye. Next, we examined heparin (HP) of various structures to investigate their potential in vitro antiviral activity against ZIKV and Dengue virus (DENV) infection in Vero cells. All compounds effectively inhibited DENV replication; however, they surprisingly promoted ZIKV replication. HP of longer chain lengths more strongly promoted activity in ZIKV replication. This study further expands our understanding of role of GAGs in ZIKV pathogenesis and carbohydrate-based antivirals against flaviviral infection.

Publication types

  • Evaluation Study
  • Research Support, N.I.H., Extramural

MeSH terms

  • Aedes / metabolism*
  • Aedes / virology
  • Animals
  • Antiviral Agents / pharmacology
  • Cattle
  • Chlorocebus aethiops
  • Dengue / drug therapy*
  • Dengue / metabolism
  • Dengue / pathology
  • Dengue / virology
  • Dengue Virus / pathogenicity
  • Eye / drug effects
  • Eye / metabolism*
  • Fetus / drug effects
  • Fetus / metabolism*
  • Glycosaminoglycans / chemistry
  • Glycosaminoglycans / metabolism*
  • Heparitin Sulfate / chemistry
  • Heparitin Sulfate / pharmacology*
  • Humans
  • In Vitro Techniques
  • Mosquito Vectors / virology
  • Neural Stem Cells / cytology
  • Neural Stem Cells / drug effects
  • Neural Stem Cells / metabolism
  • Vero Cells
  • Virus Internalization
  • Virus Replication
  • Zika Virus / pathogenicity
  • Zika Virus Infection / drug therapy*
  • Zika Virus Infection / metabolism
  • Zika Virus Infection / pathology
  • Zika Virus Infection / virology

Substances

  • Antiviral Agents
  • Glycosaminoglycans
  • Heparitin Sulfate