Vibrational coherence in the composition-selected wavepacket of photoexcited pyrimidine

J Chem Phys. 2019 Jan 28;150(4):044308. doi: 10.1063/1.5083681.

Abstract

Coherent wavepacket motion in photoexcited pyrimidine has been initiated and visualized in real time using femtosecond time-resolved ion-yield spectroscopy. A coherent superposition of at least four low-frequency Frank-Condon (FC) active modes is created in the first excited electronic state (S1), leading to a vibrational wavepacket. Its composition is manipulated experimentally by tuning the excitation wavelength in the range 309-313 nm to populate the selected vibrational levels. Interference among these vibrational levels is directly characterized by a clear quantum beat superimposed on a single-exponential decay. Fourier transform analysis of the wavelength-dependent transients shows modulation at different frequencies, providing a direct signature of multi-mode vibrational coherence resulting from the coherent excitation process. The sensitivity of the parent-ion transient to the vibrational wavepacket dynamics probably arises because different modes are connected by variable FC factors to the 3s and 3p Rydberg states.