Leishmaniasis is considered a neglected tropical disease that represents a Public Health problem due to its high incidence. In the search of new alternatives for Leishmaniasis treatment diethyldithiocarbamate (DETC) has shown an excellent leishmanicidal activity and the incorporation into drug carrier systems, such as solid lipid nanoparticles (SLNs), is very promising. In the present work DETC loaded in beeswax nanoparticles containing copaiba oil were obtained by the double emulsion/melt technique. The nanoparticles were characterized and leishmanicidal activity against L. amazonensis promastigotes forms and cytotoxicity in murine macrophages were evaluated. SLNs presented size below 200 nm, spherical morphology, negative charge surface, high encapsulation efficiency, above 80%, and excellent stability. Moreover, Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) analyses were performed to evaluate the chemical structure and possible interactions between DETC and SLNs. SLNs provided a protection for DETC, decreasing its cytotoxic effects in macrophages, which led to an improvement in the selectivity against the parasites, which almost doubled from free DETC (11.4) to DETC incorporated in SLNs (18.2). These results demonstrated that SLNs had a direct effect on L. amazonensis promastigotes without affect the viability of macrophage cell, can be a promising alternative therapy for the cutaneous treatment of L. amazonensis.
Keywords: Beeswax; Diethyldithiocarbamate; Hydrophilic drugs; L. amazonensis; Solid lipid nanoparticles.
Copyright © 2018 Elsevier B.V. All rights reserved.