The Basic Safety Standard (BSS) Directive 2013/59/EURATOM of the European Union (EU) has stated the need for member states to establish national action plans to mitigate their general population's long-term risks of exposure to radon gas. Maps of radon-prone areas provide a useful tool for the development of such plans. This paper presents the maps of radon-prone areas in the Eastern Canary Islands (Gran Canaria, Fuerteventura and Lanzarote) obtained from assessment of Geogenic Radon Potential (GRP) distribution in the territory. GRP constitutes a magnitude that is contingent on both radon activity concentration and gas permeability of soils. An extensive campaign covering all geological formations of the Eastern Canary Islands was undertaken to locally sample these parameters. Geostatistical analysis of the spatial distribution of radon concentration in soils, permeability and GRP was performed on each of the islands, and the relationship between these magnitudes and the characteristic geological formations of the volcanic islands was investigated. Areas dominated by basic volcanic and plutonic rocks (originated by both recent and ancient volcanism) exhibit relatively low levels of radon in soils, and with the exception of specific cases of very high permeability, these areas are not classified as prone to radon risk according to international criteria. Areas in which intermediate or acidic volcanic and plutonic rocks predominate are characterised by greater radon activity concentration in soils, rendering them radon-prone. Given these results, Lanzarote is classified as an island with low radon risk all over its surface; Fuerteventura presents low-medium risk; and Gran Canaria contains extensive areas in the centre and north where the risk is medium or high. This classification is consistent with the risk maps obtained by National and European agencies from indoor radon measurements conducted on these islands.
Keywords: Environmental radioactivity; Geogenic Radon Potential; Radon in soil; Radon risk maps; Soil gas permeability.
Copyright © 2019 Elsevier B.V. All rights reserved.