Standard reaction-diffusion systems are characterized by infinite velocities and no persistence in the movement of individuals, two conditions that are violated when considering living organisms. Here we consider a discrete particle model in which individuals move following a persistent random walk with finite speed and grow with logistic dynamics. We show that, when the number of individuals is very large, the individual-based model is well described by the continuous reactive Cattaneo equation (RCE), but for smaller values of the carrying capacity important finite-population effects arise. The effects of fluctuations on the propagation speed are investigated both considering the RCE with a cutoff in the reaction term and by means of numerical simulations of the individual-based model. Finally, a more general Lévy walk process for the transport of individuals is examined and an expression for the front speed of the resulting traveling wave is proposed.