Role for nuclear interleukin-37 in the suppression of innate immunity

Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4456-4461. doi: 10.1073/pnas.1821111116. Epub 2019 Feb 21.

Abstract

The IL-1 family member IL-37 broadly suppresses innate inflammation and acquired immunity. Similar to IL-1α and IL-33, IL-37 is a dual-function cytokine in that IL-37 translocates to the nucleus but also transmits a signal via surface membrane receptors. The role of nuclear IL-37 remains unknown on the ability of this cytokine to inhibit innate inflammation. Here, we compared suppression of innate inflammation in transgenic mice expressing native human IL-37 (IL-37Tg) with those of transgenic mice carrying the mutation of aspartic acid (D) to alanine (A) at amino acid 20 (IL-37D20ATg). The mutation D20A prevents cleavage of caspase-1, a step required for IL-37 nuclear translocation. In vitro, peritoneal macrophages from IL-37Tg mice reduced LPS-induced IL-1β, IL-6, TNFα and IFNγ by 40-50% whereas in macrophages from IL-37D20ATg mice this suppression was not observed, consistent with loss of nuclear function. Compared with macrophages from IL-37Tg mice, significantly less or no suppression of LPS-induced MAP kinase and NFκB activation was also observed in macrophages from IL-37D20ATg mice. In vivo, levels of IL-1β, IL-6, and TNFα in the lungs and liver were markedly reduced during endotoxemia in IL-37Tg mice but not observed in IL-37D20ATg mice. However, suppression of innate inflammation remains intact in the IL-37D20A mice once the cytokine is released from the cell and binds to its receptor. These studies reveal a nuclear function for suppression of innate inflammation and are consistent with the dual function of IL-37 and a role for caspase-1 in limiting inflammation.

Keywords: IL-37; caspase-1; inflammation; mutation; suppression.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Nucleus / metabolism
  • Cytokines / metabolism
  • Female
  • Immunity, Innate / genetics*
  • Interleukin-1 / genetics
  • Interleukin-1 / physiology*
  • Lipopolysaccharides / pharmacology
  • Macrophages, Peritoneal / drug effects
  • Macrophages, Peritoneal / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • Mutation
  • NF-kappa B / metabolism
  • Protein Transport

Substances

  • Cytokines
  • IL37 protein, human
  • Interleukin-1
  • Lipopolysaccharides
  • NF-kappa B