Objective: To analyze a novel technique of supporting fibula free flap harvest and fabrication with intraoperative navigation technology.
Materials and methods: In the first phase of the study, navigation accuracy achieved with two registration methods, namely, point-pair and hybrid technique utilizing point-pair with surface matching, were evaluated in the form of the fiducial (FRE) and target registration error (TRE). Next, a series of 42 simulated navigated fibular osteotomies were conducted on specially manufactured lower leg phantom. Postoperative results were analyzed in the form of the angular and position deviations between the virtually planned and the obtained osteotomies.
Results: Mean FRE values obtained with point-pair and hybrid registration methods were 1.82 ± 0.96 mm and 1.41 ± 0.44 mm, respectively. Mean TRE value in the fibula region was 2.00 ± 0.67 mm for the first method and 1.51 ± 0.72 mm for the second. For all performed surgeries, the total mean angular deviation between the planned and actual osteotomy trajectory equaled 3.66° ± 3.60°. The total mean position disparity of osteotomy control points was 1.85 ± 0.99 mm.
Conclusions: Navigation-guided free fibula flap harvest and fabrication, due to encouraging study results and its superiority over currently popular cutting guides in many clinical aspects, may become a routine operative procedure for the reconstruction of complex mandibular defects. The presented method is especially well suited for plastic and maxillofacial surgery.
Keywords: Computer-assisted surgery; Free fibula flap; Image-guided surgery; Intraoperative navigation; Mandible reconstruction.
Copyright © 2019 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.