Singapore experienced its first Zika virus (ZIKV) cluster in August 2016. To understand the implication of human movement on disease spread, a retrospective study was conducted using aggregated and anonymized mobile phone data to examine movement from the cluster to identify areas of possible transmission. An origin⁻destination model was developed based on the movement of three groups of individuals: (i) construction workers, (ii) residents and (iii) visitors out of the cluster locality to other parts of the island. The odds ratio of ZIKV cases in a hexagon visited by an individual from the cluster, independent of the group of individuals, is 3.20 (95% CI: 2.65⁻3.87, p-value < 0.05), reflecting a higher count of ZIKV cases when there is a movement into a hexagon from the cluster locality. A comparison of independent ROC curves tested the statistical significance of the difference between the areas under the curves of the three groups of individuals. Visitors (difference in AUC = 0.119) and residents (difference in AUC = 0.124) have a significantly larger difference in area under the curve compared to the construction workers (p-value < 0.05). This study supports the proof of concept of using mobile phone data to approximate population movement, thus identifying areas at risk of disease transmission.
Keywords: disease transmission; human movement; mobile phone data; risk; zika.