Prosthesis loosening is a highly troublesome clinical problem following total joint arthroplasty. Wear-particle-induced osteoclastogenesis has been shown to be the primary cause of periprosthetic osteolysis that eventually leads to aseptic prosthesis loosening. Therefore, inhibiting osteoclastogenesis is a promising strategy to control periprosthetic osteolysis. The possible mechanism of action of rhoifolin on osteoclastogenesis and titanium particle-induced calvarial osteolysis was examined in this study. The in vitro study showed that rhoifolin could strongly suppress the receptor activators of nuclear factor-κB (NF-κB) ligand-stimulated osteoclastogenesis, hydroxyapatite resorption, F-actin formation, and the gene expression of osteoclast-related genes. Western blot analysis illustrated that rhoifolin could attenuate the NF-κB and mitogen-activated protein kinase pathways, and the expression of transcriptional factors nuclear factor of activated T cells 1 (NFATc1) and c-Fos. Further studies indicated that rhoifolin inhibited p65 translocation to the nucleus and the activity of NFATc1 and NF-κB rhoifolin could decrease the number of tartrate-resistant acid phosphate-positive osteoclasts and titanium particle-induced C57 mouse calvarial bone loss in vivo. In conclusion, our results suggest that rhoifolin can ameliorate the osteoclasts-stimulated osteolysis, and may be a potential agent for the treatment of prosthesis loosening.
Keywords: RANKL; osteoclast; rhoifolin; titanium particle.
© 2019 Wiley Periodicals, Inc.