Apolipoprotein C-II Mimetic Peptide Promotes the Plasma Clearance of Triglyceride-Rich Lipid Emulsion and the Incorporation of Fatty Acids into Peripheral Tissues of Mice

J Nutr Metab. 2019 Feb 3:2019:7078241. doi: 10.1155/2019/7078241. eCollection 2019.

Abstract

Aim: Plasma apolipoprotein C-II (apoC-II) activates lipoprotein lipase (LPL) and thus lowers plasma triglycerides (TG). We previously reported that a human apoC-II mimetic peptide (C-II-a) decreased plasma TG in apoC-II mutant mice, as well as in apoE-knockout mice. Because it is unknown what tissues take up free fatty acids (FFAs) released from TG after C-II-a peptide administration, we investigated in mice TG plasma clearance and tissue incorporation, using 3H-triolein as a tracer, with and without C-II-a treatment.

Methods and results: Intralipid® fat emulsion was labeled with 3H-triolein and then mixed with or without C-II-a. Addition of the peptide did not alter mean particle size of the lipid emulsion particles (298 nm) but accelerated their plasma clearance. After intravenous injection into C57BL/6N mice, the plasma half-life of the 3H-triolein for control and C-II-a treated emulsions was 18.3 ± 2.2 min and 14.8 ± 0.1 min, respectively. In apoC-II mutant mice, the plasma half-life of 3H-triolein for injected control and C-II-a treated emulsions was 30.1 ± 0.1 min and 14.8 ± 0.1 min, respectively. C57BL/6N and apoC-II mutant mice at 120 minutes after the injection showed increased tissue incorporation of radioactivity in white adipose tissue when C-II-a treated emulsion was used. Higher radiolabeled uptake of lipids from C-II-a treated emulsion was also observed in the skeletal muscle of C57BL/6N mice only. In case of apoC-II mutant mice, decreased uptake of radioactive lipids was observed in the liver and kidney after addition of C-II-a to the lipid emulsion.

Conclusions: C-II-a peptide promotes the plasma clearance of TG-rich lipid emulsions in wild type and apoC-II mutant mice and promotes the incorporation of fatty acids from TG in the lipid emulsions into specific peripheral tissues.