Selenium (Se) and iodine (I) are essential elements for humans, and biofortification of vegetables with these elements is an effective way to amend their deficiencies in the diet. In this study, the distribution and transformation of Se and I species were investigated in radish seedlings that were simultaneously supplemented with these two elements; the fate and the bioaccessibility of Se and I species were dynamically surveyed in the oral, gastric and intestinal phases using a simulated in vitro digestion method. The radish seedlings were cultivated in hydroponic conditions with Se (IV), Se (VI), I- and IO3- (each 1 mg L-1). The results revealed that Se-methylselenocysteine (MeSeCys), selenocystine (SeCys2), selenomethionine (SeMet) and Se (VI) were present in radish, and MeSeCys was the dominant species in both gastric and intestinal extracts, comprising 32.7 ± 1.5% and 39.6 ± 1.1% of the total content, respectively. I- was also the dominant species, which accounted for 57.1 ± 2.1%, 46.6 ± 1.5% and 68.8 ± 1.8% of the total digested content respectively in the oral, gastric and intestinal extracts. Meanwhile, IO3- was absent and organic I accounted for approximately 20%. The bioaccessibility of Se and I in the intestinal phase reached 95.5 ± 2.5% and 85.8 ± 0.9%, respectively; although after dialysis through membranes, the data reduced to 60.1 ± 2.8% and 39.6 ± 0.8%, respectively. Contents of MeSeCys and I- increased from the oral to intestinal phase and the bioaccessibility of both Se and I in radish was above 85%. So radish is suitable as a potential dietary source of Se and I with biofortification.
Keywords: Bioaccessibility; Biofortification; I; In vitro digestion; Radish; Se.
Copyright © 2018 Elsevier Ltd. All rights reserved.