Liquid droplets sitting on nanowire (NW) tips constitute the starting point of the vapor-liquid-solid method of NW growth. Shape and volume of the droplet have been linked to a variety of growth phenomena ranging from the modification of growth direction, NW orientation, crystal phase, and even polarity. In this work we focus on numerical and theoretical analysis of the stability of liquid droplets on NW tips, explaining the peculiarity of this condition with respect to the wetting of planar surfaces. We highlight the role of droplet pinning at the tip in engineering the contact angle. Experimental results on the characteristics of In droplets of variable volume sitting on the tips or side facets of InAs NWs are also provided. This work contributes to the fundamental understanding of the nature of droplets contact angle at the tip of NWs and to the improvement of the engineering of such nanostructures.