Changes in energy metabolism occur not only in diseases such as cancer but also in the normal development and aging processes of various organisms. These metabolic changes result to lead to imbalances in energy metabolism related to cellular and tissue homeostasis. In the model organism C. elegans, which is used to study aging, an imbalance in age-related energy metabolism exists between mitochondrial oxidative phosphorylation and aerobic glycolysis. Cellular lactate and pyruvate are key intermediates in intracellular energy metabolic pathways and can indicate age-related imbalances in energy metabolism. Thus, the cellular lactate/pyruvate ratio can be monitored as a biomarker during aging. Moreover, recent studies have proposed a candidate novel biomarker for aging and age-related declines in the nematode C. elegans.
Keywords: Aging; C. elegans; Cancer; Energy metabolism; Metabolic change; Mitochondrial ROS.