Background: Onychomycosis is a fungal infection of the nail that is often recalcitrant to treatment and prone to relapse. Traditional potassium hydroxide and culture diagnosis is costly and time-consuming. Therefore, molecular methods were investigated to demonstrate effectiveness in diagnosis and to quantify the microbial flora present that may be contributing to disease.
Methods: A total of 8,816 clinically suspicious toenail samples were collected by podiatric physicians across the United States from patients aged 0 to 103 years and compared with a control population (N = 20). Next-generation sequencing and quantitative polymerase chain reaction were used to identify and quantify dermatophytes, nondermatophyte molds, and bacteria.
Results: Approximately 50% of suspicious toenails contained both fungi and bacteria, with the dermatophyte Trichophyton rubrum contributing the highest relative abundance and presence in 40% of these samples. Of the remaining 50% of samples, 34% had bacterial species present and 16% had neither. Fungi only were present in less than 1% of samples. Nondermatophyte molds contributed to 11.0% of occurrences in fungus-positive samples. All of the control samples were negative for fungi, with commensal bacterial species composing most of the flora population.
Conclusions: Molecular methods were successful in efficiently quantifying microbial and mycologic presence in the nail. Contributions from dermatophytes were lower than expected, whereas the opposite was true for nondermatophyte molds. The clinical significance of these results is currently unknown.