Transient Introduction of miR-294 in the Heart Promotes Cardiomyocyte Cell Cycle Reentry After Injury

Circ Res. 2019 Jun 21;125(1):14-25. doi: 10.1161/CIRCRESAHA.118.314223. Epub 2019 Apr 9.

Abstract

Rationale: Embryonic heart is characterized of rapidly dividing cardiomyocytes required to build a working myocardium. Cardiomyocytes retain some proliferative capacity in the neonates but lose it in adulthood. Consequently, a number of signaling hubs including microRNAs are altered during cardiac development that adversely impacts regenerative potential of cardiac tissue. Embryonic stem cell cycle miRs are a class of microRNAs exclusively expressed during developmental stages; however, their effect on cardiomyocyte proliferation and heart function in adult myocardium has not been studied previously.

Objective: To determine whether transient reintroduction of embryonic stem cell cycle miR-294 promotes cardiomyocyte cell cycle reentry enhancing cardiac repair after myocardial injury.

Methods and results: miR-294 is expressed in the heart during development, prenatal stages, lost in the neonate, and adult heart confirmed by qRT-PCR and in situ hybridization. Neonatal ventricular myocytes treated with miR-294 showed elevated expression of Ki67, p-histone H3, and Aurora B confirmed by immunocytochemistry compared with control cells. miR-294 enhanced oxidative phosphorylation and glycolysis in Neonatal ventricular myocytes measured by seahorse assay. Mechanistically, miR-294 represses Wee1 leading to increased activity of the cyclin B1/CDK1 complex confirmed by qRT-PCR and immunoblot analysis. Next, a doxycycline-inducible AAV9-miR-294 vector was delivered to mice for activating miR-294 in myocytes for 14 days continuously after myocardial infarction. miR-294-treated mice significantly improved left ventricular functions together with decreased infarct size and apoptosis 8 weeks after MI. Myocyte cell cycle reentry increased in miR-294 hearts analyzed by Ki67, pH3, and AurB (Aurora B kinase) expression parallel to increased small myocyte number in the heart. Isolated adult myocytes from miR-294 hearts showed increased 5-ethynyl-2'-deoxyuridine+ cells and upregulation of cell cycle markers and miR-294 targets 8 weeks after MI.

Conclusions: Ectopic transient expression of miR-294 recapitulates developmental signaling and phenotype in cardiomyocytes promoting cell cycle reentry that leads to augmented cardiac function in mice after myocardial infarction.

Keywords: cell cycle; embryonic stem cells; microRNAs; myocardial infarction; myocardium.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Newborn
  • Cell Cycle / physiology*
  • Cells, Cultured
  • Embryonic Stem Cells / physiology*
  • Female
  • Male
  • Mice
  • Mice, Inbred C57BL
  • MicroRNAs / genetics
  • MicroRNAs / metabolism*
  • Myocardial Infarction / genetics
  • Myocardial Infarction / metabolism*
  • Myocytes, Cardiac / physiology*
  • Pregnancy
  • Rats

Substances

  • MIRN294 microRNA, mouse
  • MicroRNAs