Screening for CYP3A4 inhibition and induction coupled to parallel artificial membrane permeability assay (PAMPA) for prediction of botanical-drug interactions: The case of açaí and maca

Phytomedicine. 2019 Jun:59:152915. doi: 10.1016/j.phymed.2019.152915. Epub 2019 Apr 3.

Abstract

Background: The consumption of botanical dietary supplements (BDS) is a common practice among the US population. However, the potential for botanical-drug interactions exists, and their mechanisms have not been thoroughly studied. CYP3A4 is an important enzyme that contributes to the metabolism of about 60% of clinically used drugs.

Purpose: To investigate the potential for botanical-drug interactions of Lepidium meyenii Walpers (maca) root and Euterpe oleracea Mart. (açaí) berries, two commonly used BDS, when co-administered with CYP3A4-metabolized drugs.

Methods: In an attempt to decrease the general discrepancy between in vivo and in vitro studies, the absorption profiles, particularly for passive diffusion, of plant extracts were investigated. Specifically, the parallel artificial membrane permeability assay (PAMPA) model was utilized to simulate intestinal filtration of passively diffused constituents of açaí and maca extracts. These were subsequently screened for in vitro liver CYP3A4 inhibition and induction. In the inhibition assay, midazolam was used as the probe substrate on genotyped human liver microsomes (CYP3A5 null), and the production of its 1'-substituted metabolite when co-cultured with extract treatments was monitored. In the induction assay, extract treatments were applied to human primary hepatocytes, and quantitative PCR analysis was performed to determine CYP3A4 mRNA expression.

Results: Passively diffused constituents of the methanol açaí extract (IC50 of 28.03 µg/µl) demonstrated the highest inhibition potential, and, at 1.5 µg/µl, induced significant changes in CYP3A4 gene expression. The composition of this extract was further investigated using the chemometric tool Mass Profiler Professional (MPP) on liquid chromatography-mass spectroscopy (LC-MS) data. Subsequently, five compounds of interest characterized by high abundance or high permeability were extracted for further study. This included efforts in effective passive permeability determination and structural elucidation by tandem mass spectrometry (MS/MS).

Conclusion: The passively absorbable portion of a methanol açaí extract exhibited inhibition and induction effects on CYP3A4 suggesting the potential to produce botanical-drug interactions.

Keywords: Açaí; CYP3A4; Euterpe oleracea Mart.; Lepidium meyenii Walpers; Maca; PAMPA.

MeSH terms

  • Cell Membrane Permeability
  • Cytochrome P-450 CYP3A / metabolism
  • Cytochrome P-450 CYP3A Inhibitors / pharmacology*
  • Dietary Supplements
  • Euterpe / chemistry*
  • Fruit / chemistry*
  • Humans
  • Lepidium / chemistry*
  • Membranes, Artificial
  • Microsomes, Liver / drug effects
  • Microsomes, Liver / metabolism
  • Plant Extracts / chemistry
  • Plant Extracts / pharmacology*
  • Tandem Mass Spectrometry / methods

Substances

  • Cytochrome P-450 CYP3A Inhibitors
  • Membranes, Artificial
  • Plant Extracts
  • Cytochrome P-450 CYP3A
  • CYP3A4 protein, human