Glycine-proline-glutamate (GPE) is a cleaved tripeptide of IGF-I that can be processed to cycloprolylglycine (cPG) in the brain. IGF-I protects the hippocampal somatostatinergic system from β-amyloid (Aβ) insult and although neither IGF-I-derived peptides bind to IGF-I receptors, they exert protective actions in several neurological disorders. As their effects on the hippocampal somatostatinergic system remain unknown, the objective of this study was to evaluate if cPG and/or GPE prevent the deleterious effects of Aβ25-35 infusion on this system and whether changes in intracellular-related signaling and interleukin (IL) content are involved in their protective effect. We also determined the effect of cPG or GPE co-administration with Aβ25-35 on IL secretion in glial cultures and the influence of these ILs on signaling activation and somatostatin synthesis in neuronal cultures. cPG or GPE co-administration reduced Aβ-induced cell death and pro-inflammatory ILs, increased IL-4 and partially avoided the reduction of components of the somatostatinergic system affected by Aβ25-35. GPE increased activation of Akt and CREB and reduced GSK3β activation and astrogliosis, whereas cPG increased phosphorylation of extracellular signal-regulated kinases. Both peptides converged in the activation of mTOR and S6 kinase. Co-administration of these peptides with Aβ25-35 to glial cultures increased IL-4 and reduced IL-1β; this release of IL-4 could be responsible for activation of Akt and increased somatostatin in neuronal cultures. Our findings suggest that cPG and GPE exert protective effects against Aβ on the somatostatinergic system by a reduction of the inflammatory environment that may activate different pro-survival pathways in these neurons.
Keywords: Cycloprolylglycine; GPE; Hippocampus; Inflammation; Somatostatin; β-amyloid.
Copyright © 2019 Elsevier Ltd. All rights reserved.