We investigate the usefulness of quantitative ultrasound and B-mode texture features for characterization of ulnar nerve fascicles. Ultrasound data were acquired from cadaveric specimens using a nominal 30-MHz probe. Next, the nerves were extracted to prepare histology sections. Eighty-five fascicles were matched between the B-mode images and the histology sections. For each fascicle image, we selected an intra-fascicular region of interest. We used histology sections to determine features related to the concentration of collagen and myelin and ultrasound data to calculate the backscatter coefficient (-24.89 ± 8.31 dB), attenuation coefficient (0.92 ± 0.04 db/cm-MHz), Nakagami parameter (1.01 ± 0.18) and entropy (6.92 ± 0.83), as well as B-mode texture features obtained via the gray-level co-occurrence matrix algorithm. Significant Spearman rank correlations between the combined collagen and myelin concentrations were obtained for the backscatter coefficient (R = -0.68), entropy (R = -0.51) and several texture features. Our study indicates that quantitative ultrasound may potentially provide information on structural components of nerve fascicles.
Keywords: High frequency; Histology; Nerve; Pattern recognition; Quantitative ultrasound; Texture analysis.
Copyright © 2019 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.