Endocochlear potential (EP) is essential for cochlear amplification by providing the voltage source needed to drive outer hair cell (OHC) transducer current, which leads to OHC electromechanical force. An early study using furosemide to reversibly reduce EP showed that distortion product otoacoustic emissions (DPOAEs) recovered before EP. This indicated that cochlear amplification may be able to adjust to a new, lower EP. To investigate the mechanism of this adjustment, the extracellular OHC voltage, which we term local cochlear microphonic (LCM), was measured simultaneously with DPOAE and EP while using intraperitoneal (IP) and intravenous injection of furosemide to reversibly reduce EP. With IP injection, the DPOAEs recovered fully, whereas the EP was reduced, but LCM showed a similar time course as EP. The DPOAEs failed to accurately report the variation of cochlear amplification. With intravenous injection, for which both reduction and recovery of EP are known to occur relatively quickly compared to IP, the cochlear amplification observed in LCM could attain nearly full or even full recovery with reduced EP. This showed the cochlea has an ability to adjust to diminished operating condition. Furthermore, the cochlear amplifier and EP recovered with different time courses: cochlear amplification just started to recover after the EP was nearly fully recovered and stabilized. Using a Boltzmann model and the second harmonic of the LCM to estimate the mechanoelectric transducer channel operating point, we found that the recovery of cochlear amplification occurred with recentering of the operating point.
Copyright © 2019 Biophysical Society. Published by Elsevier Inc. All rights reserved.