Environmental pollutants, such as insecticides, can alter the equilibrium of aquatic ecosystems, particularly those closely located to human occupations. The use of such anthropogenic compounds frequently results in the selection of resistant individuals. However, how the underlying insecticide resistance mechanisms interplay with the abilities of the resistant individuals to cope with other environmental challenges (e.g., predators) has not received adequate attention. Here, we evaluated whether resistance to pyrethroid insecticides in larvae of the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae), would affect their abilities to survive other environmental challenges. We assessed the susceptibilities of the pyrethroid-resistant larvae to other insecticides (i.e., the oxadiazine indoxacarb and juvenile hormone mimic pyriproxyfen) and determined the activities of potential detoxification enzymes. Finally, we also recorded potential alterations in larva swimming behavior in the presence of predators, such as the water bug Belostoma anurum (Hemiptera: Belostomatidae). Our results revealed that high pyrethroid resistance was associated with moderate resistance to the other two insecticides. Furthermore, this multiple resistance was associated with higher detoxification activity by glutathione-S-transferases and general esterases. Interestingly, in comparison with insecticide-susceptible larvae, the pyrethroid-resistant larvae not only swam for longer periods and distances, but also took longer to be captured by B. anurum nymphs. Collectively, our findings revealed increased abilities to survive natural environmental challenges (e.g., predatory attacks) in mosquito larvae that express physiological and behavioral changes associated with multiple resistance to insecticides.
Keywords: Giant water bugs; Insecticide resistance; Predation risk; Pyrethroid insecticides; Yellow fever mosquitoes.
Copyright © 2019. Published by Elsevier Inc.