Non-steric-zipper models for pathogenic α-synuclein conformers

APL Bioeng. 2018 May 1;2(2):026105. doi: 10.1063/1.5023460. eCollection 2018 Jun.

Abstract

Parkinson's disease neurodegenerative brain tissue exhibits two biophysically distinct α-synuclein fiber isoforms-single stranded fibers that appear to be steric-zippers and double-stranded fibers with an undetermined structure. Herein, we describe a β-helical homology model of α-synuclein that exhibits stability in probabilistic and Monte Carlo simulations as a candidate for stable prional dimer conformers in equilibrium with double-stranded fibers and cytotoxic pore assemblies. Molecular models of β-helical pore assemblies are consistent with α-synucleinA53T transfected rat immunofluorescence epitope maps. Atomic force microscopy reveals that α-synuclein peptides aggregate into anisotropic fibrils lacking the density or circumference of a steric-zipper. Moreover, fibrillation was blocked by mutations designed to hinder β-helical but not steric-zipper conformations. β-helical species provide a structural basis for previously described biophysical properties that are incompatible with a steric-zipper, provide pathogenic mechanisms for familial human α-synuclein mutations, and offer a direct cytotoxic target for therapeutic development.