A highly water soluble, nano-formulated curcumin was used for the treatment of the experimental model of spinal cord injury (SCI) in rats. Nanocurcumin and a vehicle nanocarrier as a control, were delivered both locally, immediately after the spinal cord injury, and intraperitoneally during the 4 consecutive weeks after SCI. The efficacy of the treatment was assessed using behavioral tests, which were performed during the experiment, weekly for 9 weeks. The behavioral tests (BBB, flat beam test, rotarod, motoRater) revealed a significant improvement in the nanocurcumin treated group, compared to the nanocarrier control. An immunohistochemical analysis of the spinal cord tissue was performed at the end of the experiment and this proved a significant preservation of the white matter tissue, a reduced area of glial scaring and a higher amount of newly sprouted axons in the nanocurcumin treated group. The expression of endogenous genes (Sort1, Fgf2, Irf5, Mrc1, Olig2, Casp3, Gap43, Gfap, Vegf, Nfkβ) and interleukins (IL-1β, TNF-α, IL-6, IL-12, CCL-5, IL-11, IL-10, IL-13) was evaluated by qPCR and showed changes in the expression of the inflammatory cytokines in the first two weeks after SCI.
Keywords: Astrogliosis; Axonal growth; Inflammatory response; Nanocurcumin; Neuroregeneration; Spinal cord injury.
Copyright © 2019 Elsevier Ltd. All rights reserved.