The evolution of Peninsular Indian biodiversity has been a fascinating topic of research due to historical connections of this region to the ancient Gondwanaland. We investigated the phylogeny and historical biogeography of nearly all extant species of the genus Piper reported from the region to assess the biogeographical origins and test mechanisms of lineage diversification (dispersal, vicariance and in situ radiation) of this highly diverse genus of angiosperms commonly found in the understory of evergreen forests. The phylogeny of 21 species of Piper reported from Peninsular India was reconstructed for the first time, which included three new putative species from the Western Ghats. We used BEAST for the divergence time estimations (using three constraints), and ancestral range estimations were performed with the dated phylogenetic tree using BIOGEOBEARS. Divergence dating analysis revealed that the genus Piper originated during lower Cretaceous around 110 Ma [95% highest posterior density (HPD): 116-105 Ma] and colonized Peninsular India five times independently, from Southeast Asia starting from the Oligocene. The two major dispersals into India occurred during the periods of 27.3 Ma (95% HPD: 35.8-19.9.) and 15.5 Ma (95% HPD: 24.9-7.11). This was followed by rapid radiations in some lineages with subsequent back dispersals to Southeast Asia. Our study indicates that dispersals from Southeast Asia led to the arrival of Piper to Indian subcontinent following the Indo-Eurasian collision. Members of Piper have colonized and diversified within the climatically stable habitats of Peninsular India. Furthermore, the present study provides evidence for the Miocene overland dispersal of Piper species to Africa from South Asia.
Keywords: Dispersals; Historical biogeography; India–Asia collision; Phylogeny; Piper; Western Ghats.
Copyright © 2019. Published by Elsevier Inc.