Background: Evidence linking long-term exposure to particulate air pollution to blood pressure (BP) in high-income countries may not be transportable to low- and middle-income countries. We examined cross-sectional associations between ambient fine particulate matter (PM2.5) and black carbon (BC) with BP (systolic [SBP] and diastolic [DBP]) and prevalent hypertension in adults from 28 peri-urban villages near Hyderabad, India.
Methods: We studied 5531 participants from the Andhra Pradesh Children and Parents Study (18-84 years, 54% men). We measured BP (2010-2012) in the right arm and defined hypertension as SBP ≥130 mmHg and/or DBP ≥80 mmHg. We used land-use regression models to estimate annual average PM2.5 and BC at participant's residence. We applied linear and logistic nested mixed-effect models stratified by sex and adjusted by cooking fuel type to estimate associations between within-village PM2.5 or BC and health.
Results: Mean (SD) PM2.5 was 33 µg/m (2.7) and BC was 2.5 µg/m (0.23). In women, a 1 µg/m increase in PM2.5 was associated with 1.4 mmHg higher SBP (95% confidence interval [CI]: 0.12, 2.7), 0.87 mmHg higher DBP (95% CI: -0.18, 1.9), and 4% higher odds of hypertension (95% CI: 0%, 9%). In men, associations with SBP (0.52 mmHg; 95% CI: -0.82, 1.8), DBP (0.41 mmHg; 95% CI: -0.69, 1.5), and hypertension (2% higher odds; 95% CI: -2%, 6%) were weaker. No associations were observed with BC.
Conclusion: We observed a positive association between ambient PM2.5 and BP and hypertension in women. Longitudinal studies in this region are needed to corroborate our findings.