The population-attributable fraction (PAF) quantifies the public health impact of a harmful exposure. Despite being a measure of significant importance, an estimand accommodating complicated time-to-event data is not clearly defined. We discuss current estimands of the PAF used to quantify the public health impact of an internal time-dependent exposure for data subject to competing outcomes. To overcome some limitations, we proposed a novel estimand that is based on dynamic prediction by landmarking. In a profound simulation study, we discuss interpretation and performance of the various estimands and their estimators. The methods are applied to a large French database to estimate the health impact of ventilator-associated pneumonia for patients in intensive care.
Keywords: competing risks; hospital-acquired infection; mortality; population-attributable risk; time-dependent exposure.
© 2019 John Wiley & Sons, Ltd.