Femtosecond laser-induced spatial redistribution of silver species (ions, clusters, and hole centers) in a silver-containing phosphate glass is investigated by correlative means of near-field scanning optical microscopy (NSOM) images, numerical simulations, chemical micro-probe analysis, and nanoscale spatial profiles after soft etching. In particular, we found that the chemical etching selectivity for nanoscale patterning is strongly dependent upon the irradiation of femtosecond laser due to the spatial redistribution of silver species within the affected area. These results strongly indicate that controlling the distribution of silver species by femtosecond laser irradiation may open new routes for surface nanoscale chemical and/or spatial patterning for the fabrication of 2D surface photonic crystals.