Comparative Validation of Breast Cancer Risk Prediction Models and Projections for Future Risk Stratification

J Natl Cancer Inst. 2020 Mar 1;112(3):278-285. doi: 10.1093/jnci/djz113.

Abstract

Background: External validation of risk models is critical for risk-stratified breast cancer prevention. We used the Individualized Coherent Absolute Risk Estimation (iCARE) as a flexible tool for risk model development and comparative model validation and to make projections for population risk stratification.

Methods: Performance of two recently developed models, one based on the Breast and Prostate Cancer Cohort Consortium analysis (iCARE-BPC3) and another based on a literature review (iCARE-Lit), were compared with two established models (Breast Cancer Risk Assessment Tool and International Breast Cancer Intervention Study Model) based on classical risk factors in a UK-based cohort of 64 874 white non-Hispanic women (863 patients) age 35-74 years. Risk projections in a target population of US white non-Hispanic women age 50-70 years assessed potential improvements in risk stratification by adding mammographic breast density (MD) and polygenic risk score (PRS).

Results: The best calibrated models were iCARE-Lit (expected to observed number of cases [E/O] = 0.98, 95% confidence interval [CI] = 0.87 to 1.11) for women younger than 50 years, and iCARE-BPC3 (E/O = 1.00, 95% CI = 0.93 to 1.09) for women 50 years or older. Risk projections using iCARE-BPC3 indicated classical risk factors can identify approximately 500 000 women at moderate to high risk (>3% 5-year risk) in the target population. Addition of MD and a 313-variant PRS is expected to increase this number to approximately 3.5 million women, and among them, approximately 153 000 are expected to develop invasive breast cancer within 5 years.

Conclusions: iCARE models based on classical risk factors perform similarly to or better than BCRAT or IBIS in white non-Hispanic women. Addition of MD and PRS can lead to substantial improvements in risk stratification. However, these integrated models require independent prospective validation before broad clinical applications.

Publication types

  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Breast Neoplasms / epidemiology*
  • Female
  • Humans
  • Middle Aged
  • Models, Statistical*
  • Reproducibility of Results
  • Risk
  • Young Adult