Quantitative resistance (QR) to crop diseases has usually been much more durable than major-gene, effector-triggered resistance. It has been observed that the effectiveness of some QR has eroded as pathogens adapt to it, especially when deployment is extensive and epidemics occur regularly, but it generally declines more slowly than effector-triggered resistance. Changes in aggressiveness and specificity of diverse pathogens on cultivars with QR have been recorded, along with experimental data on fitness costs of pathogen adaptation to QR, but there is little information about molecular mechanisms of adaptation. Some QR has correlated or antagonistic effects on multiple diseases. Longitudinal data on cultivars' disease ratings in trials over several years can be used to assess the significance of QR for durable resistance in crops. It is argued that published data likely underreport the durability of QR, owing to publication bias. The implications of research on QR for plant breeding are discussed.
Keywords: effector-triggered resistance; filing cabinet effect; fitness penalty; publication bias; quantitative resistance.