Coordination between NADPH oxidase and vascular peroxidase 1 promotes dysfunctions of endothelial progenitor cells in hypoxia-induced pulmonary hypertensive rats

Eur J Pharmacol. 2019 Aug 15:857:172459. doi: 10.1016/j.ejphar.2019.172459. Epub 2019 Jun 16.

Abstract

Previous studies have demonstrated that NADPH oxidase (NOX)/vascular peroxidase (VPO1) pathway - mediated oxidative stress plays an important role in the pathogenesis of multiple cardiovascular diseases. This study aims to evaluate the correlation between NOX/VPO1 pathway and endothelial progenitor cells (EPCs) dysfunctions in hypoxia-induced pulmonary hypertension (PH). The rats were exposed to 10% hypoxia for 3 weeks to establish a PH model, which showed increases in right ventricle systolic pressure, right ventricular and pulmonary vascular remodeling, acceleration in apoptosis and impairment in functions of the peripheral blood derived - EPCs (the reduced abilities in adhesion, migration and tube formation), accompanied by up-regulation of NOX (NOX2 and NOX4) and VPO1. Next, normal EPCs were cultured under hypoxia to induce apoptosis in vitro. Consistent with the in vivo findings, hypoxia enhanced the apoptosis and dysfunctions of EPCs concomitant with an increase in NOX and VPO1 expression, hydrogen peroxide (H2O2) and hypochlorous acid (HOCl) production; these phenomena were attenuated by NOX2 or NOX4 siRNA. Knockdown of VPO1 showed similar results to that of NOX siRNA except no effect on NOX expression and H2O2 production. Based on these observations, we conclude that NOX/VPO1 pathway-derived reactive oxygen species promote the oxidative injury and dysfunctions of EPCs in PH, which may contribute to endothelial dysfunctions in PH.

Keywords: Dysfunction; Endothelial progenitor cells; Hypoxia; NADPH oxidase; Pulmonary hypertension; Vascular peroxidase 1.

MeSH terms

  • Animals
  • Apoptosis
  • Cell Hypoxia
  • Endothelial Progenitor Cells / pathology*
  • Gene Knockdown Techniques
  • Hemeproteins / deficiency
  • Hemeproteins / genetics
  • Hemeproteins / metabolism*
  • Hypertension, Pulmonary / enzymology*
  • Hypertension, Pulmonary / genetics
  • Hypertension, Pulmonary / pathology*
  • Male
  • NADPH Oxidase 2 / deficiency
  • NADPH Oxidase 2 / genetics
  • NADPH Oxidase 2 / metabolism*
  • NADPH Oxidase 4 / deficiency
  • NADPH Oxidase 4 / genetics
  • NADPH Oxidase 4 / metabolism*
  • Peroxidases / deficiency
  • Peroxidases / genetics
  • Peroxidases / metabolism*
  • Phenotype
  • RNA, Small Interfering / genetics
  • Rats
  • Rats, Sprague-Dawley
  • Reactive Oxygen Species / metabolism

Substances

  • Hemeproteins
  • RNA, Small Interfering
  • Reactive Oxygen Species
  • vascular peroxidase, rat
  • Peroxidases
  • NADPH Oxidase 2
  • NADPH Oxidase 4