Engineering Zero-Dimensional Quantum Confinement in Transition-Metal Dichalcogenide Heterostructures

ACS Nano. 2019 Jul 23;13(7):8303-8311. doi: 10.1021/acsnano.9b03716. Epub 2019 Jun 26.

Abstract

Achieving robust, localized quantum states in two-dimensional (2D) materials like graphene is desirable for optoelectronics and quantum information yet challenging due to the difficulties in confining Dirac fermions. Traditional colloidal nanoparticle and epitaxially grown quantum dots are also impractical for solid-state devices, due to either complex surface chemistry, unreliable spatial positioning, or lack of electrical and optical access. In this work, we design and optimize nanoscale monolayer transition-metal dichalcogenide (TMD) heterostructures to natively host massive Dirac fermion bound states. We develop an integrated multiscale approach to translate first-principles electronic structure to higher length scales, where we apply a continuum model to consider arbitrary 2D quantum dot geometries and sizes. Focusing on a model system of an MoS2 quantum dot in a WS2 matrix (MoS2/WS2), we find discrete bound states in triangular dots with side lengths up to 20 nm. We propose figures of merit that, when optimized for, result in heterostructure configurations engineered for maximally isolated bound states at room temperature. These design principles apply to the entire family of semiconducting TMD materials, and we predict 6.5 nm MoS2/WS2 (quantum dot/matrix) triangular dots and 4.5 nm MoSe2/WSe2 triangular dots as ideal systems for confining massive Dirac fermions.

Keywords: Dirac fermions; heterostructure; multiscale modeling; quantum dot; transition-metal dichalcogenides; two-dimensional materials.