Chimeric antigen receptor (CAR) modified T-cell therapy, a unique platform technology highlighting precision medicine through utilization of molecular biology and cell-based therapeutics has shown unprecedented rates in patients with hematological malignancies such as acute lymphocyte leukemia, non-Hodgkin's lymphoma and multiple myeloma (MM). With the approval of CD19-targeted CAR T-cells by the Food and Drug Administration in acute lymphoblastic leukemia (ALL) and NHL, this technology is positioned for aggressive expansion to combination therapeutic opportunities and proof of principle towards utility in other malignant disorders. However, despite the impressive results seen with hematological malignancies, CAR T-cells have shown limited efficacy in solid tumors with several unsuccessful preclinical studies. Regardless, these attempts have provided us with a better understanding of the imminent challenges specific to solid tumors even if they have not so far led to expanded clinical treatment opportunities outside ALL/NHL/MM. This review summarizes our current understanding of CAR T-cell mechanism of action, while presenting the major limitations of CAR T-cell derived treatments in solid tumors. We further discuss recent findings and present new potential strategies to overcome the challenges facing solid tumor targeting by CAR T-cell platforms.
Keywords: Chimeric antigen receptor T-cells; Cytokine release syndrome; Molecular biology.
© 2019 S. Karger AG, Basel.