Background: Previous resting-state functional magnetic resonance imaging (rs-fMRI) studies have revealed intrinsic regional activity alterations in obsessive-compulsive disorder (OCD), but those results were based on group analyses, which limits their applicability to clinical diagnosis and treatment at the level of the individual.
Methods: We examined fractional amplitude low-frequency fluctuation (fALFF) and applied support vector machine (SVM) to discriminate OCD patients from healthy controls on the basis of rs-fMRI data. Values of fALFF, calculated from 68 drug-naive OCD patients and 68 demographically matched healthy controls, served as input features for the classification procedure.
Results: The classifier achieved 72% accuracy (p ≤ 0.001). This discrimination was based on regions that included the left superior temporal gyrus, the right middle temporal gyrus, the left supramarginal gyrus and the superior parietal lobule.
Conclusions: These results indicate that OCD-related abnormalities in temporal and parietal lobe activation have predictive power for group membership; furthermore, the findings suggest that machine learning techniques can be used to aid in the identification of individuals with OCD in clinical diagnosis.
Keywords: Drug-naive; Fractional amplitude of low-frequency fluctuation; Multivariate classification; Obsessive-compulsive disorder; Resting-state fMRI; Support vector machine.