Three-Dimensional Genomic Structure and Cohesin Occupancy Correlate with Transcriptional Activity during Spermatogenesis

Cell Rep. 2019 Jul 9;28(2):352-367.e9. doi: 10.1016/j.celrep.2019.06.037.

Abstract

Mammalian gametogenesis involves dramatic and tightly regulated chromatin remodeling, whose regulatory pathways remain largely unexplored. Here, we generate a comprehensive high-resolution structural and functional atlas of mouse spermatogenesis by combining in situ chromosome conformation capture sequencing (Hi-C), RNA sequencing (RNA-seq), and chromatin immunoprecipitation sequencing (ChIP-seq) of CCCTC-binding factor (CTCF) and meiotic cohesins, coupled with confocal and super-resolution microscopy. Spermatogonia presents well-defined compartment patterns and topological domains. However, chromosome occupancy and compartmentalization are highly re-arranged during prophase I, with cohesins bound to active promoters in DNA loops out of the chromosomal axes. Compartment patterns re-emerge in round spermatids, where cohesin occupancy correlates with transcriptional activity of key developmental genes. The compact sperm genome contains compartments with actively transcribed genes but no fine-scale topological domains, concomitant with the presence of protamines. Overall, we demonstrate how genome-wide cohesin occupancy and transcriptional activity is associated with three-dimensional (3D) remodeling during spermatogenesis, ultimately reprogramming the genome for the next generation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Cycle Proteins / metabolism*
  • Chromosomal Proteins, Non-Histone / metabolism*
  • Cohesins
  • Genomics / methods*
  • Humans
  • Male
  • Molecular Conformation
  • Spermatogenesis / genetics*

Substances

  • Cell Cycle Proteins
  • Chromosomal Proteins, Non-Histone