CPVT: Arrhythmogenesis, Therapeutic Management, and Future Perspectives. A Brief Review of the Literature

Front Cardiovasc Med. 2019 Jul 12:6:92. doi: 10.3389/fcvm.2019.00092. eCollection 2019.

Abstract

Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) is a primary electrical disease characterized by a normal resting electrocardiogram and induction of malignant arrhythmias during adrenergic stress leading to syncope or sudden cardiac death (SCD). CPVT is caused by mutations in the cardiac ryanodine receptor (RyR2) or in the sarcoplasmic reticulum protein calsequestrin 2 genes (CASQ2). The RyR2 mutations are responsible for the autosomal dominant form of CPVT, while CASQ2 mutations are rare and account for the recessive form. These mutations cause a substantial inballance in the homeostasis of intracellular calcium resulting in polymorphic ventricular tachycardia through triggered activity. Beta blockers were for years the cornerstone of therapy in these patients. Sodium channel blockers, especially flecainide, have an additive role in those not responding in beta blockade. Implantation of defibrillators needs a meticulous evaluation since inappropriate shocks may lead to electrical storm. Finally, cardiac sympathetic denervation might also be an alternative therapeutic option. Early identification and risk stratification is of major importance in patients with CPVT. The aim of the present review is to present the arrhythmogenic mechanisms of the disease, the current therapies applied and potential future perspectives.

Keywords: CPVT; arrhythmias; channelopathies; genes; risk stratification; sudden death.

Publication types

  • Review