The giant grouper, Epinephelus lanceolatus, is the largest coral reef-dwelling bony fish species. However, despite extremely fast growth performance and the considerable economic importance in this species, its genetic regulation of growth remains unknown. Here, we performed the first genome-wide association study (GWAS) for five growth traits in 289 giant groupers using 42,323 single nucleotide polymorphisms (SNPs) obtained by genotyping-by-sequencing (GBS). We identified a total of 36 growth-related SNPs, of which 11 SNPs reached a genome-wide significance level. The phenotypic variance explained by these SNPs varied from 7.09% for body height to 18.42% for body length. Moreover, 22 quantitative trait loci (QTLs) for growth traits, including nine significant QTLs and 13 suggestive QTLs, were found on multiple chromosomes. Interestingly, the QTL (LG17: 6934451) was shared between body weight and body height, while two significant QTLs (LG7: 22596399 and LG15: 11877836) for body length were consistent with the associated regions of total length at the genome-wide suggestive level. Eight potential candidate genes close to the associated SNPs were selected for expression analysis, of which four genes (phosphatidylinositol transfer protein cytoplasmic 1, protein tyrosine phosphatase receptor type E, alpha/beta hydrolase domain-containing protein 17C, and vascular endothelial growth factor A-A) were differentially expressed and involved in metabolism, development, response stress, etc. This study improves our understanding of the complex genetic architecture of growth in the giant grouper. The results contribute to the selective breeding of grouper species and the conservation of coral reef fishes.
Keywords: GBS; GWAS; Giant grouper; Growth; QTL.