Granzyme B and miR-378a Interaction in Acetaminophen Toxicity in Children

Microrna. 2020;9(2):121-132. doi: 10.2174/2211536608666190808144456.

Abstract

Background and aim: Hepatic phase I drug-metabolizing enzymes CYP2E1, CYP1A2 and CYP3A4 catalyze the biotransformation of Acetaminophen (APAP) and are important in the mediation of toxicity. The potential role of other hepatic and non-hepatic Phase I enzymes in APAP toxicity has not been established.

Methods: PCR array containing 84 genes involved in phase I drug metabolism was examined in subgroups of hospitalized children for APAP overdose, categorized as no toxicity (ALT ≤ 45 IU/L, n=5) and moderate toxicity (ALT ≥ 500 IU/L, n=5).

Results: Significant downregulation was observed for ALDH6A1, CYP4F12 and GZMB in the no toxicity subgroup and ALDH1A1, CYP27A1 and GZMB in the moderate toxicity subgroup. qRTPCR confirmed significant downregulation for ALDH1A1, CYP4F12, and GZMB. In-silico analysis identified GZMB 3'UTR to be a target of miR-378a-5p. Overexpression of miR-378a-5p reduced the luciferase activity of GZMB 3'UTR reporter plasmid reportedly by 50%. NK-92 cells transfected with the miR-378a-5p mimic extended the effect of APAP on GZMB protein expression compared to mimic controls. In addition, miR-378a-5p was significantly upregulated in blood samples of children with APAP overdose undergoing NAC treatment.

Conclusion: Overall, our study suggests the presence of a novel signaling pathway, whereby miR- 378a-5p inhibits GZMB expression in children with APAP overdose.

Keywords: APAP-Induced Liver Injury (AILI); Acetaminophen (APAP); Cytochrome P450; Granzyme B; biomarkers; miR-378a..

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetaminophen / metabolism
  • Acetaminophen / pharmacokinetics*
  • Acetaminophen / toxicity*
  • Analgesics, Non-Narcotic / metabolism
  • Analgesics, Non-Narcotic / pharmacokinetics*
  • Analgesics, Non-Narcotic / toxicity*
  • Chemical and Drug Induced Liver Injury / pathology
  • Child
  • Cytochrome P-450 CYP1A2 / metabolism
  • Cytochrome P-450 CYP2E1 / metabolism
  • Cytochrome P-450 CYP3A / metabolism
  • Granzymes / metabolism*
  • Humans
  • Inactivation, Metabolic / genetics
  • MicroRNAs / genetics*

Substances

  • Analgesics, Non-Narcotic
  • MIRN378 microRNA, human
  • MicroRNAs
  • Acetaminophen
  • Cytochrome P-450 CYP2E1
  • CYP1A2 protein, human
  • Cytochrome P-450 CYP1A2
  • Cytochrome P-450 CYP3A
  • CYP3A4 protein, human
  • GZMB protein, human
  • Granzymes