Production of nitrates and perchlorates by laser ablation of sodium chloride in simulated Martian atmospheres. Implications for their formation by electric discharges in dust devils

Life Sci Space Res (Amst). 2019 Aug:22:125-136. doi: 10.1016/j.lssr.2019.02.007. Epub 2019 Feb 26.

Abstract

Nitrates and perchlorates are present both on Earth and Mars. In the Martian environment perchlorates dominate over nitrates whereas on Earth is contrariwise. This implies that the mechanisms responsible for their formation are different for both planets. The chemical elements required for their formation are nitrogen and chlorine, which are present in the atmosphere and surface, respectively. Dust in the Martian atmosphere causes atmospheric perturbations that lead to the development of dust-devils and sandstorms. Dust devils contain both chemical elements simultaneously, and normally generate high electric fields that can trigger the formation of electric discharges. Here we present laboratory experiments of this phenomenon using laser ablation of a sodium chloride (NaCl) plate in two different simulated atmospheres: (1) 96% CO2, 2% N2 and 2% Ar; and (2) 66% CO2, 33% N2 and 1% Ar. The dust that condensed and accumulated on the walls of the reactor was analyzed by different analytical techniques that included Fourier transform infrared spectroscopy, visible spectroscopy using azo dyes, thermogravimetry/simultaneous thermal analyses coupled to mass spectrometry, powder X-ray diffraction, and ion chromatography. The main components of the ablated dust corresponded to NaCl ≥ 91.5%, sodium nitrate (NaNO3 = 1.6-6.0%), and sodium perchlorate (NaClO4 ∼ 0.2-0.3%). It is interesting to note that these salts formed in a dry process that is relevant to Mars today. A thermochemical model was used to understand the chemical steps that led to the formation of these salts in the gas phase. The NaNO3NaClO4 (wt/wt) ratio of this process was estimated to vary from 5.0 to 30.0; this ratio is too high compared to that found on Mars (NO3-ClO4- (wt/wt)) from 0.004 to 0.13). This implies that gaseous NaCl was not efficiently oxidized to perchlorate by the electric discharge process. We propose instead that gaseous metal chlorides (e.g., MgCl2, NaCl, CaCl2, KCl) were supplied to the atmosphere by the volatilization of chloride minerals present in the dust by electric discharges generated in dust devils and were subsequently oxidized to perchlorate by photochemical processes. Further work is required to assess the relative contribution of this possible source.

Keywords: Dust devils; Electric discharges; Mars; Nitrate; Perchlorate; Sodium chloride.

MeSH terms

  • Atmosphere / chemistry*
  • Dust
  • Extraterrestrial Environment
  • Mars*
  • Nitrates / chemistry*
  • Perchlorates / chemistry*
  • Space Simulation
  • Static Electricity

Substances

  • Dust
  • Nitrates
  • Perchlorates