The remote allosteric control of Orai channel gating

PLoS Biol. 2019 Aug 30;17(8):e3000413. doi: 10.1371/journal.pbio.3000413. eCollection 2019 Aug.

Abstract

Calcium signals drive an endless array of cellular responses including secretion, contraction, transcription, cell division, and growth. The ubiquitously expressed Orai family of plasma membrane (PM) ion channels mediate Ca2+ entry signals triggered by the Ca2+ sensor Stromal Interaction Molecule (STIM) proteins of the endoplasmic reticulum (ER). The 2 proteins interact within curiously obscure ER-PM junctions, driving an allosteric gating mechanism for the Orai channel. Although key to Ca2+ signal generation, molecular understanding of this activation process remain obscure. Crystallographic structural analyses reveal much about the exquisite hexameric core structure of Orai channels. But how STIM proteins bind to the channel periphery and remotely control opening of the central pore, has eluded such analysis. Recent studies apply both crystallography and single-particle cryogenic electron microscopy (cryo-EM) analyses to probe the structure of Orai mutants that mimic activation by STIM. The results provide new understanding on the open state of the channel and how STIM proteins may exert remote allosteric control of channel gating.

Publication types

  • Research Support, N.I.H., Extramural
  • Comment

MeSH terms

  • Calcium Channels*
  • Calcium Signaling
  • Calcium*
  • ORAI1 Protein
  • Stromal Interaction Molecule 1

Substances

  • Calcium Channels
  • ORAI1 Protein
  • Stromal Interaction Molecule 1
  • Calcium