Near-infrared spectroscopy (NIRS) has been widely used to determine various composition traits of many dairy products in the industry. In the last few years, near-infrared (NIR) instruments have become more and more accessible, and now, portable devices can be easily used in the field, allowing the direct measurement of important quality traits. However, the comparison of the predictive performances of different NIR instruments is not simple, and the literature is lacking. These instruments may use different wavelength intervals and calibration procedures, making it difficult to establish whether differences are due to the spectral interval, the chemometric approach, or the instrument's technology. Hence, the aims of this study were (1) to evaluate the prediction accuracy of chemical contents (5 traits), pH, texture (2 traits), and color (5 traits) of 37 categories of cheese; (2) to compare 3 instruments [2 benchtop, working in reflectance (R) and transmittance (T) mode (NIRS-R and NIRS-T, respectively) and 1 portable device (VisNIRS-R)], using their entire spectral ranges (1100-2498, 850-1048, and 350-1830 nm, respectively, for NIRS-R, NIRS-T and VisNIRS-R); (3) to examine different wavelength intervals of the spectrum within instrument, comparing also the common intervals among the 3 instruments; and (4) to determine the presence of bias in predicted traits for specific cheese categories. A Bayesian approach was used to develop 8 calibration models for each of 13 traits. This study confirmed that NIR spectroscopy can be used to predict the chemical composition of a large number of different cheeses, whereas pH and texture traits were poorly predicted. Color showed variable predictability, according to the trait considered, the instrument used, and, within instrument, according to the wavelength intervals. The predictive performance of the VisNIRS-R portable device was generally better than the 2 laboratory NIRS instruments, whether with the entire spectrum or selected intervals. The VisNIRS-R was found suitable for analyzing chemical composition in real time, without the need for sample uptake and processing. Our results also indicated that instrument technology is much more important than the NIR spectral range for accurate prediction equations, but the visible range is useful when predicting color traits, other than lightness. Specifically for certain categories (i.e., caprine, moldy, and fresh cheeses), dedicated calibrations seem to be needed to obtain unbiased and more accurate results.
Keywords: Bayesian calibration; cheese quality; chemometric; texture trait; water-soluble protein.
Copyright © 2019 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.