The incompatibility between the anode and the cathode chemistry limits the used of Mg as an anode. This issue may be addressed by separating the anolyte and the catholyte with a membrane that only allows for Mg2+ transport. Mg-MOF-74 thin films were used as the separator for this purpose. It was shown to meet the needs of low-resistance, selective Mg2+ transport. The uniform MOF thin films supported on Au substrate with thicknesses down to ca. 202 nm showed an intrinsic resistance as low as 6.4 Ω cm2 , with the normalized room-temperature ionic conductivity of ca. 3.17×10-6 S cm-1 . When synthesized directly onto a porous anodized aluminum oxide (AAO) support, the resulting films were used as a standalone membrane to permit stable, low-overpotential Mg striping and plating for over 100 cycles at a current density of 0.05 mA cm-2 . The film was effective in blocking solvent molecules and counterions from crossing over for extended period of time.
Keywords: Mg batteries; ion transport; metal-organic frameworks; selectivity; thin films.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.