Radiocarbon dating Pacific archaeological sites is fraught with difficulties. Often situated in coastal beach ridges or sand dunes, these sites exhibit horizontal and vertical disturbances, datable materials such as wood charcoal are typically highly degraded, may be derived from old trees or driftwood unless specifically identified to short-lived material, while bone collagen rarely survives in tropical conditions. Shell, therefore, is the most logical material for dating Pacific sites since it is resistant to alteration, can be sampled to ensure only the last few seasons of growth are represented and is often closely tied to human economic activities. However, shell radiocarbon (14C) dating has been plagued by interpretive problems largely due to our limited knowledge of the 14C cycle in nearshore marine and estuarine environments. Consequently, shell dates are typically ignored in regional chronometric evaluations and in recent years shell is often avoided for dating altogether. Recent advances in our understanding of the source of shell 14C as well as the development of the first South Pacific Gyre model of changing marine 14C over time, combined with Bayesian statistical modelling, now provide us with insight into the value of these shell radiocarbon dates. Here we present a revision of the age of the To'aga site on Ofu Island-an early occupation site associated with the initial Polynesian Plainware period in Sāmoa, the earliest use of which we date to between 2785 and 2607 cal BP (68% probability).